Contributions of residues of pancreatic phospholipase A2 to interfacial binding, catalysis, and activation.

نویسندگان

  • B Z Yu
  • J Rogers
  • M D Tsai
  • C Pidgeon
  • M K Jain
چکیده

Primary rate and equilibrium parameters for 60 site-directed mutants of bovine pancreatic phospholipase A2 (PLA2) are analyzed so incremental contributions of the substitution of specific residues can be evaluated. The magnitude of the change is evaluated so a functional role in the context of the N- and C-domains of PLA2 can be assigned, and their relationship to the catalytic residues and to the i-face that makes contact with the interface. The effect of substitutions and interfacial charge is characterized by the equilibrium dissociation constant for dissociation of the bound enzyme from the interface (Kd), the dissociation constant for dissociation of a substrate mimic from the active site of the bound enzyme (KL), and the interfacial Michaelis constants, KM and kcat. Activity is lost (>99.9%) on the substitution of H48 and D49, the catalytic residues. A more than 95% decrease in kcat is seen with the substitution of F5, I9, D99, A102, or F106, which form the substrate binding pocket. Certain residues, which are not part of the catalytic site or the substrate binding pocket, also modulate kcat. Interfacial anionic charge lowers Kd, and induces kcat activation through K56, K53, K119, or K120. Significant changes in KL are seen by the substitution of N6, I9, F22, Y52, K53, N71, Y73, A102, or A103. Changes in KM [=(k2+k-1)/k1] are attributed to kcat (=k2) and KL (=k-1/k1). Some substitutions change more than one parameter, implying an allosteric effect of the binding to the interface on KS, and the effect of the interfacial anionic charge on kcat. Interpreted in the context of the overall structure, results provide insights into the role of segments and domains in the microscopic events of catalytic turnover and processivity, and their allosteric regulation. We suggest that the interfacial recognition region (i-face) of PLA2, due to the plasticity of certain segments and domains, exercises an allosteric control on the substrate binding and chemical step.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differential interfacial and substrate binding modes of mammalian pancreatic phospholipases A2: a comparison among human, bovine, and porcine enzymes.

To identify the residues essential for interfacial binding and substrate binding of human pancreatic phospholipase A2 (hpPLA2), several ionic residues in the putative interfacial binding surface (R6E, K7E, K10E, and K116E) and substrate binding site (D53K and K56E) were mutated. Interfacial affinity of these mutants was measured using anionic polymerized liposomes, and their enzymatic activity ...

متن کامل

Roles of aromatic residues in high interfacial activity of naja naja atra phospholipase A(2)

Acidic phospholipase A2 (PLA2) from the venom of Chinese cobra (Naja naja atra) has high activity on zwitterionic membranes and contains six aromatic residues, including Tyr-3, Trp-18, Trp-19, Trp-61, Phe-64, and Tyr-110, on its putative interfacial binding surface. To assess the roles of these aromatic residues in the interfacial catalysis of N. n. atra PLA2, we mutated them to Ala and measure...

متن کامل

A structural determinant of the unique interfacial binding mode of bovine pancreatic phospholipase A2.

The catalytic steps of the phospholipase A2 (PLA2)-catalyzed hydrolysis of phospholipids are preceded by interfacial binding. Among various pancreatic PLA2s, bovine pancreatic PLA2 (bpPLA2) has a unique interfacial binding mode in which Lys-56 plays an important role in its binding to anionic lipid surfaces. To identify the structural determinant of this unique interfacial binding mode of bpPLA...

متن کامل

Calcium-dependent and -independent interfacial binding and catalysis of cytosolic group IV phospholipase A2.

Cytosolic group IV phospholipase A2 (cPLA2) plays a role in liberating arachidonic acid from the sn-2 position of mammalian cellular phospholipids. The enzyme consists of a catalytic domain joined to an N-terminal calcium-dependent, membrane binding domain (C2 domain). The interfacial binding properties of the full-length, nonphosphorylated enzyme and its C2 domain to phospholipid vesicles were...

متن کامل

Membrane penetration of cytosolic phospholipase A2 is necessary for its interfacial catalysis and arachidonate specificity.

To determine the mechanism of calcium-dependent membrane binding of cytosolic phospholipase A2 (cPLA2), we measured the interactions of cPLA2 with phospholipid monolayers and polymerizable mixed liposomes containing various phospholipids. In the presence of calcium, cPLA2 showed much higher penetrating power than secretory human pancreatic PLA2 toward anionic and electrically neutral phospholip...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemistry

دوره 38 15  شماره 

صفحات  -

تاریخ انتشار 1999